Differential metabolism of diradyl glycerol molecular subclasses and molecular species by rabbit brain diglyceride kinase.

نویسندگان

  • D A Ford
  • R W Gross
چکیده

Elevations in the mass of ether-linked diglycerides (i.e. 1-O-alk-1'-enyl-2-acyl-sn-glycerol (AAG) and 1-O-alkyl-2-acyl-sn-glycerol (Alkyl AG)) during cellular activation are prolonged in comparison to their 1,2-diacyl-sn-glycerol (DAG) counterparts. Since the metabolic removal of DAG is determined, in large part, by the rate of its phosphorylation by diglyceride kinase, we quantified differences in the activity of diglyceride kinase utilizing individual subclasses of diradyl glycerols as substrate. Rabbit brain microsomal diglyceride kinase activity was over 30-fold greater utilizing DAG as substrate (25.8 nmol.mg-1.min-1) in comparison to AAG (0.8 nmol.mg-1.min-1). No alterations in the affinity of microsomal diglyceride kinase for ATP were present (Km approximately 0.5 mM) utilizing each diradyl glycerol subclass. Similar subclass specificities for diglyceride kinase (i.e. DAG greater than Alkyl AG much greater than AAG) were present in brain and liver cytosol as well as in liver microsomes utilizing multiple assay conditions. In sharp contrast, Escherichia coli diglyceride kinase phosphorylated DAG, Alkyl AG, or AAG diradyl glycerol molecular subclasses at identical rates. Furthermore, although DAG was rapidly hydrolyzed by diglyceride lipase, catabolism of AAG or Alkyl AG by plasmalogenase, alkyl ether hydrolase, or diglyceride/monoglyceride lipase was undetectable. Collectively, these results demonstrate the importance of the differential catabolism of each diradyl glycerol molecular subclass as a primary determinant of their biologic half-lives. Since individual subclasses of diglycerides have distinct physical properties and physiologic functions, these results underscore the importance of lipid subclass specific metabolism in tailoring individual cellular responses during activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential turnover of polyunsaturated fatty acids in plasmalogen and diacyl glycerophospholipids of isolated cardiac myocytes.

To investigate the relative turnover of esterified polyunsaturated fatty acids in diacylglycerophospholipids and plasmalogens in isolated cardiac myocytes, we characterized the phospholipid composition and distribution of radiolabel in different phospholipid classes and in individual molecular species of diradyl choline (CGP) and ethanolamine (EGP) glycerophospholipids after incubation of isola...

متن کامل

Polymorphisms of Antioxidant’ Genes as a Target for Diabetes Management

Diabetes mellitus (DM) is one of the most important health problems with increasing prevalence worldwide. Oxidative stress that is a result of imbalance between reactive oxygen species (ROS) generation and antioxidant defense mechanisms has been demonstrated as a main pathology in DM. Hyperglycemia-induced ROS productions can induce oxidative stress through four major molecular mechanisms inclu...

متن کامل

Subunit structure of rabbit muscle pyruvate kinase.

Peptide mapping of rabbit muscle pyruvate kinase following tryptic digestion gave one-quarter the number of ninhydrin-reactive peptides, arginine-containing peptides, and tryptophan-containing peptides expected from the amino acid composition. Sedimentation velocity studies and disc gel electrophoresis of the enzyme subunits formed in 4 M urea and having one-quarter of the initial molecular wei...

متن کامل

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

Biosynthesis of D-alanyl-lipoteichoic acid: role of diglyceride kinase in the synthesis of phosphatidylglycerol for chain elongation.

Lipophilic and hydrophilic D-alanyl-lipoteichoic acids are elongated in Lactobacillus casei by the transfer of sn-glycerol 1-phosphate units from phosphatidylglycerol to the poly(glycerophosphate) moiety of the polymer. These sn-glycerol 1-phosphate units are added to the end of the poly(glycerophosphate) which is distal to the glycolipid anchor; 1,2-diglyceride results from this addition. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 265 21  شماره 

صفحات  -

تاریخ انتشار 1990